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ABSTRACT

Reviews and critiques of selected methods for nuclear shield-
ing calculations are presented. Those techniques considered
are numerical integration of the Boltzmann equation, moments
method, Monte Carlo, method of successive scatterings, and
removal cross-section method. An outline of the advantages
and disadvantages of each particular method is included,
along with a new simplified calculation procedure.
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1.0 INTRODUCTION

This report consists of a review and critique of several selected
methods of shielding calculations. Certain of the methods are applicable
to both neutron and y-ray penetration problems whereas others are unique
for a given type of radiation. For each method outlined, a discussion of
particular advantages and disadvantages is included.

The review is limited to techniques suitable for shielding studies of
compact power systems. Certain methods of analysis are not considered
because of their inapplicability to the problem under consideration. The
shielding requirements for mobile power systems such as aircraft and rockets
place a premium upon shield size and weight in contrast to stationary nuclear
power plants where economics is usually the most important design parameter.
The methods of shield analysis for compact power systems must be of higher
order accuracy than usual since over design of the shield is undesirable.
A further characteristic of shielding for mobile systems is to be noted,
namely, the geometric configurations encountered will frequently lack the
symmetries present in stationary plants. As always, complex geometries
compound the nature of the calculational problem considerably.

The problem of reactor shielding is concerned with the biological
shielding of personnel, the shielding of equipment from radiation damage,
and the protection of equipment and structures from thermal damage. A
complete discussion of all the problems is beyond the intent of this
memorandum. However, the fundamental quantities of interest in any shield-
ing analysis are the neutron and y-ray flux densities as functions of
position, energy, and angle. From these quantities, and certain physical
parameters, all of the physical effects of radiation may be calculated.
The bulk of this report will be concerned with'methods of computing the
neutron and y-ray flux densities.

In the next section a brief discussion of the transport of neutrons and
y-rays is given. The third section of the report is devoted to outlining
the various methods of use for shielding calculations. Section 4.0 contains
a proposal for a new method of performing shielding studies. The proposal
is untested for shielding calculations. The last section is a bibliography
of papers, etc., giving a more general discussion of shielding theory methods.
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2.0 THE TRANSPORT EQUATION FOR NEUTRONS AND PHOTONS

2.1 Neutron Transport

The basic equation of neutron conservation is the linearized
Boltzmann equation. The neutron flux density, N(r,Eq), is defined as

N(r,E,0) E the number of neutrons in unit volume at r,
within unit energy at E, within unit solid
angle about C2, which, in unit time, cross a
unit element of area with normal in the
direction 0.

The statement of neutron conservation then equates losses out of a unit
volume of phase space by convection and collision with gains by collision
of neutrons in other elements of phase space and sources. The transport
equation is then

V N(r,E,ýj) + O(r,E) N(r,E,D) - { f O(r,E',02' ;, r,ELl) N(rE',g')

dO_'dE' + S(r,E,O) (1)

The left-hand side gives the loss by convection and collision. O(r,E) is
the macroscopic total cross-section and is not a function of neutron direction
for isotropic media. a(r,E',_'; r,E,D) is the macroscopic transfer probability
of neutrons from E', 0' to E,O. The transfer probability depends upon the
nature of the scattering (elastic or inelastic) and the scattering law, It
is convenient to consider the Boltzmann equation in terms of the lethargy
variable u E ln(Eo/E), where Eo is some peak energy. For fission sources,
Eo is usually taken to be 15-20 Mev. For later illustrations, the transport
equation for slabs will be used. For slab geometry, and in terms of the
lethargy, Equation (1) is written

P dAN(x~u,ý) + aT(x,u)N(x,u,p) = f f (x,u'pi1'; x~uj)N(x~u',p.')du'dp'

ut -1

+ S(X,U,P) (2)

where p = cos 9, with 9 the angle between the +x axis and the direction of
neutron motion.
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Various special scattering laws are easily treated. If all
scattering is assumed spherically symmetric in the laboratory system,
then the transfer probability is independent of p' and p. To first order
accuracy inelastic scattering is spherically symmetric in laboratory
coordinates. For elastic scattering symmetric in the cernter of mass
system, the lethargy and scattering angle are uniquely related. Hence
the integral over u' and p' involves a 8 function in one or the other
variable. Note that even if the transfer probability is independent of
p', p, the flux density is still a function of angle.

Boundary conditions for the transport equation for shielding
problems are usually given in terms of incident neutrons at interfaces.
Thus, for a slab shield of thickness a, adjoining a core at x - 0, the
boundary conditions would be given at x - 0 for 0 5 p . 1. At x = a,
assuming a vacuum boundary, the condition is N(au,p) = 0, -1 P 0.
Except for rare cases, the external source is zero, or a delta function
at x = 0 that is given by the boundary conditions.

2.2 y-ray Transport

The transport equation for photons is the same as (1), however,
simplifications are possible. The only source of scattered photons is the
Compton effect). For Compton scaLtering the energy and angle are related,
and again a delta function will appear in the integrand. It is convenient
to change variable from the flux density to the energy density, I, where

I(r,E,Q) = E ' N(r,ED)

In terms of I, equation (1) becomes

_ - VI(rE,Q) + a(L,E) I(rEq) F a( ,E,'C'; rE,) T(rE',_2') E dE'dC'

E' Q2'

+ S'(r,ED) (3)

If E is expressed in electron mass units, then the photon energy may be
written in terms of the Compton wave length K, with

k = I/E (E in electron masses)

(*)Other sources such as annihilation radiation and bremsstrahlung are

usually negligible.
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with the above change of variables, the scattering kernel is written

a(r,E', '; r,E,O) = C(_, ',O' ') 6(1 + X' - -

__ E

The scattering kernel k(X',X) is defined as

k(k',X) = 2n XT-(X',_.

and is given by the Klein-Nishina formula for Compton scattering. In
particular,

k(X',X) = L -- [L + L+ 2(X' - X) + (X' - )2] A (M' < X < X' + 2)

0 otherwise, where A is the atom density,

For slabs the transport equation is thus

d x(x,XP) + U(xX) I(xXP) = I(x,X',1') k(X'21
dx f f ' 27T

o 0

+ 8(1 + X' - - _'_D') d 'dX' + S'(x,+,i) (4)

The transport equation for photons is somewhat simpler than for
neutrons because of the known scattering law. In particular, only photons
in the wavelength range X - 2 < X' : X can contribute to the scattering
source. This simplification of the scattering source is particularly
useful in numerical integration and moments expansions of the transport
equation for photons.
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3.0 SELECTED METHODS OF SHIELD CALCULATIONS

In view of the complex nature of the Boltzmann equation analytic
solutions are possible only for the simplest of problems. A number of
procedures for approximate shield calculations have been proposed. All
of the methods represent approximations to the transport equation, either
numerical approximations, or simplifying physical approximations. Several
methods of both types will be considered.

3.1 Numerical Integration of the Boltzmann Equation

There are numerous numerical approximations used for transport
calculations. Rather than outline a particular method, such as the SN
method, a general procedure is considered. The approach is sufficient to
indicate the nature of the approximations inherent in the method.

Basically every numerical approximation is found by dividing
continuous variables into discrete variables and solving the resultant
difference equations. Values intermediate to the discrete points are
found by interpolation. For the transport problem, for neutrons, the
lethargy, angle, and spatial ranges are discretized. First the lethargy
interval 0 `g U • Uth is divided into G groups, not necessarily of equal
spacing, with AU = A = U - U A thermal group with index G+l is
appended. Integration of the Boltzmann equation
(2) over the interval A yields

g

N ( + a 5 (x,p) Ng(x,p) = du . a(x,u',p'; x,u,[) N(x,u',p')

u u' -i
g-l

du'dp'j + Sg(x,p) (5)

The quantities Ng, Cg, Sg denote average values of the variable in the
interval A . Thus,g

1 Jug N(x,u',p) du'
g ugI

and

1ug a(x,u') N(x,u',p) du'

ug-1
ag (x,p) = u-

Jug N(x,u',p) du'

Ug-l
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Note that although a(x,u) is not a function of p, the average value of the
cross-section, 7g, is a function of p. Usually the variation of gwith
p is ignored since N(x,u,p) is a reasonably flat function of p for reactor
calculations. In shield calculations there may be a very nighly anisotropic
flux distribution, particularly at deep penetrations and high energies, in
which case the distinction is important.

An immediate difficulty with the numerical procedure is apparent.
The proper cross-sections for the group equations cannot be computed until
the solution is known. In reactor calculations the properly weighted cross-
sections are frequently found by assuming a spectrum initially or by computing
on approximate spectrums from an infinite medium calculation. The infinite
medium method is useful for shield calculations where the spectrum "hardening"
with increasing depth may be explicitly included.

Assuming that properly weighted coefficients may be found then the
scattering integral can be handled. The integration over ul is approximated
by a sum, such as

G+I
f1 {g fa(x,u',4'; x,u,p) N(x,u',WP) du' = fd' g"g(x.,';x,)Ng (x,1')

-1 Ug.l u -I g'=l(
(6)

where g',g represents the transfer probability from group g' to group g.
The determination of, ' depends upon the scattering law and the weighting
function used for the lethargy integration. The sum includes all of the
groups. For shielding purposes the thermal region is rarely divided into
many groups, hence shield calculations characteristically contain fewer
groups than criticality calculations. In general, low energy neutrons are
rapidly absorbed and do not up.scatter. In this case, all elements of g9
are zero for g' > g. For elastic scattering only elements for g' near g are
non-zero. For inelastic scattering g' may be far removed from g.

The angular variation is treated in. similar fashion. The range
- p • • 1 is divided into segments of width A n A n = n pn l. The various
terms in the group transport equation (5) may be integrated over A as before.
The integration yields n

Pn ddPx N(x, P) dNg.L n x (x) + N g(x)

Pn-1

CU -g(x,px) ) d = ) n p Ng(x) + Nng(x)]

n- 1
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where of, are weight coefficients which depend upon the quadrarure rule
assumed. For instance, in the S method -X ,, is assumed to vary linearly
over an interval. For the Wick method, tZe g sian weight functions are
used. Obviously many different possibilities exist.

The transfer probabilities from equation (6) may be written

d• dp[ g, 'g (x,p'; x,p) Ng(x,p') dp' = •g g(x) Nng'

n ',n n

n-i -1 g n' g'

The group transport equation is then of the form

d1 1Ng(x) + Nnl(x)]+ P nNn + Nnlg(x)] i gg(x) Nn W(x)an d~x: gx n',n g

n' g'

+ S g(x) (8)

Mhe spatial variation is treated as before. In general the result is a
difference equation coupling various mesh points in the indices g,n,j
(j is a spatial index). A typical difference equation would be of the form

r .N g 1. N g+ t N g+ b Nnl g=
n,j n,j n,j n,j-i n,j n-l,j n,j n-lj-I

Tn g ,g Nn, + S *g (9)

Tn',n;j ,j n,j
n',g'

g 1,2, G1., I

n 0,1, . N

j 0,1, . ., J

The result is a very large set of simultaneous algebraic equations.

The method of solution is straight forward. An initial distribution,
consistent with the boundary conditions, is assumed. The difference relation
(9) is applied repetitively to each point until a convergent solution is
obtained. Further comments on the solution of algebraic equations are given
in Section 4.0.
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From the elementary sketch above, it is possible to assess the
advantages and disadvantages of the direct integration method. The
advantages are several:

1) Inhomogeneous media and finite media are readily
incorporated into the analysis.

2) Complex scattering kernels can 'be approximated by
the transfer matrix gr ,g

3) The truncation error associated with discretizing
can be reduced by refinement of the mesh..

4) The method yields all of the desired information,
i.e., N(r,u,p).

5) The results are not subject to statistical variation,
hence the method is readily adapted for deep penetrations.

6) Surveys may be made rapidly by reducing the number of
discrete variables.

The disadvantages associated with the method are rather severe.

1) For detailed studies the amount of machine time is
very large. In particular, the number of iterations
to reach a solution is roughly proportional to the
square of the unknowns. To double the mesh size in
each dimension increases the computation time by a
factor of 64 approximately,

2) Higher dimension problems, and irregular geometries,
increase the computational burden. Two and three
space dimension problems are at the limit of present
machine capabilities.

3) The proper weighted cross-sections are difficult to
find and require a subsidiary calculation of the same
order of magnitude as the original problem.

4) Reduction of truncation error increases the computational
time in roughly quadratic fashion.

3.2 The Moments Method

The basis of the moments method is an expansion of the angular
and spatial dependence of the flux density. The objective of the expansion
is to decouple the complex behavior of the flux density into a set of
variables which may be recombined to approximate the flux density. The
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expansion should be carried out in such a manner that the resulting
simultaneous equations for the expansion variables are easy to solve, and
further, the expansion variables should form a rapidly convergent sequence.

The process of reduction is outlined for a plane problem for
photons. The transport equation is

d I(x,X,,)+ C(xX) I(x,X,P) = I(x,X'M, ') k(X',X) .

0 •V

*, 6(1+ V ' - X - 0 • 0') ! d + S x k , )( 0

-T do'dX' +I S(x,X,p~). (10)

The expansion for the angular coordinates is in terms of the
Legendre polynomials P1 (p) whereas the spatial expansion is in terms of
the spatial moments moments xn. The generalized moment, say bn,• 0(),
is determined as

bn, (X) = dXd °()XIX,, i(1b , TcOn'. dx f 1 dIP t(P) xn (xX,•)(i

where a is the cross-section at the largest source energy. The choice
of constants facilitates normalization.

The objective is to reduce the transport equation to coupled
equations (through n and ý) for the variable bn,k(X).

The first step in the reduction of the transport equation is to
carry out the angular expansion. The expansion

I(x,LL) = 4 (X Pep)

is used. By the orthogonality of the P i(P)
I

I(X,ý) = 2TT f I(x,X,p) P (p)Nd•

-i

By multiplying equation (10) by Pi(•~) and integrating over all 0 we have
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dldx 1+1 dx + P•(I + •' - X) k(X',X) *

0

dR(x,X') NX' + Sj(xX) (12)

The proof of (12) follows from the addition theorem for Legendre polynomials
and the known recursion relations for the P9 (p). Equation (12) applies for

= 0,1,2, . . ..

The spatial dependence is eliminated from the definition (11),
that is

n+l

n0 f Ik (x,X) xdx

n+ 1
•o n

To find the equation for the b (X) we multiply (12) by -T,-- x and
integrate over all x. The n, left-hand side is n. considered
first. The derivative terms are integrated by parts to yield

n+l n+li 0o o 2xIn 0 -

2•i n-x I nx II+l(xX)dx + T o no2o+1 n. 1 1I-

n+l

-nx n-1 ,-(x,X)dx + o(x,X)Tk(x,X)dx (13)
n (0 +C3

In order for the integrated terms to vanish, it is necessary that vanishfaster than x for large x. An immediate consequence of this restriction is

that the medium must be infinitely thick. Obviously this represents a
serious restriction. Equally important is that fact that a(x,X) must actually
be independent of x, and thus the moments method only applies to homogeneous
media. The above two restrictions limit the applicability of the method
particularly to compact power 'systems.

With the above assumptions, equation (13) becomes

a(X) bn,(X) - bo 2 bn-lA+l() .+i b n-l,-1 (X)J' (14)
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The right-hand side of equation (12) is easily found to be

Jk (I + X X) k(X',X) bnkQ(X')dX' + SnfQ)

The Boltzmann equation reduces to

a(X) bn, (X) = KP(I + ?, - X) k(XX) b n(Xl)dX' +
0

Go bn-l,•lG) + - bn-l k-)}+ Sn~ ) (15)

"The aim of the method has been achieved in that a coupled set of
simple equations have been found for the moments of the expansion. The
integral is evaluated numerically since the functions PE(X',X) and k(xl,k)
are known. Further, the integration is over the range k - 2 < X' < X and
hence the entire integrand is known.

For the case of neutron penetration, the. integration is more
involved since the range of integration is from 0 -u : u`, and furthermore,
the scattering kernel is not as simple a function as for y-rays. For neutrons
an approximate kernel is derived in a manner similar to the methods of direct
numerical integration.

The equation for the moments, (15), is solved sequentially for
n = 1, 2 . . . . Note that the equation couples only lower moments together
and hence no truncation is necessary to solve for any given moment. This is
in contradistinction to the usual spherical harmonics method of neutron
transport.

The reconstruction of the. energy density is reasonably straight
forward. It is sufficient to find the coefficients Ik(xX). The objective
is to find a rapidly convergent expansion for the function I& x X). The. n
coefficients b n(X) are not directly useful since the factors x do notý
obey a simple orthogonality rule. The following physical approximation
is usually applied. The behavior of the flux density with increasing
penetration is roughly exponential. An expansion of the form

IX(x,X) = an,k (X) eaOx p n (16)

n

with p (x) a polynomial of degree n, is assumed. The coefficients can be
evaluaýed as
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an,(X) (17)

if the pnx) are the Laguerre polynomials. But from the definition of
bq L(X), nhe an)P(X) are linear combinations of the bn',() for
n '= 1,2 , n. That is,

anj(X) C n' b n,(X) (18)

/n'

Several points are worth noting. First, the expansion (16) was
particularly chosen so that the coefficients were easily found, as by
equation (17). Obviously other weight functions than e-aox are possible.
Different weight functions give different coefficients, but orthogonality
relations relative to a weight function are readily found, The choice of
e-COx is particularly useful since only a few a (X) are needed, i.e.,
the series converges rapidly. n, A

The Boltzmann equation could have been expanded directly in terms
of the ang(X) instead of the bn.k(X). In a certain sense the b, f(X) are
more general in that the appropriate coefficients for weight functions
other than unity are most readily obtained from the bn,() o). Thus the
bnI(X)are the simplest to use for finding expressions such as (18).

The basic elements of the moments method are now clear. The
calculational procedure is simple (particularly for photons) and the
reconstruction of the flux density allows wide latitude for use with
rather involved weight functions. The development does illustrate the
particular advantages and disadvantages of the method.

Advantageous properties of the method include

1) The method yields quite accurate results for
deep penetrations.

2) Relatively universal penetration curves can be
derived and used to study composite media with-
out additional calculation.

3) Machine time is relatively small compared to
direct integration.

4) The method lends itself readily to deriving
elementary equations which approximate the
solution.

5) Ancillary information such as build-up factors
are easily found.
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The disadvantages are quite serious for compact shields.

1) The requirement of an infinite medium. By uke
of approximate formulas this restriction can b1e
made less severe.

2) Homogeneous media. This is very serious and
not removable..

3) The determination of the angular distribution
requires many approximations since the proper
weight functions in the expansions are not
readily apparent.

4) The results are generally applicable only beyond
several mean free. paths, thus the full flux density
is not found.

5) In many cases the accuracy of the result is hard
to determine.

3.3 The Monte Carlo Method

The Monte Carlo method is a statistical sampling procedure for
conducting theoretical experiments on particle distributions. In its
simplest form the method consists of a straightforward calculation of many
particle histories. The results yield a probabilistic measure of the
penetration and distribution of particles. Usually a straightforward
reproduction of histories is inefficient and a variety of modifications
to the procedure are adopted to yield equivalent results with less effort.

The basis of Monte Carlo calculations is the Central Limit Theorem
of Statistics.. The theorem relates theoretical first and second moments of
distribution functions to the normal distribution. Let f(x) denote a
distribution function, hence

f(x)dx - 1

The first moment of the distribution, the mean value, is then

<x) = J xf(x)dx

The second moment is

2 S 2x
<x) 2f x(x)dx
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A very useful statistical quantity is the second moment about the mean,
usually called the variance r. Evidently

CO

r = <(x - <x>)2> (x2 - 2x<x> + <x>2) f(x)dx

2 2= <x) - <x>

The square root of the variance is called the standard deviation and
denoted

o = fr

The Central Limit Theorem then states that if a finite number
uf values of x, say xi, 1 5 i 5 N,

- 1 7x = N-L xi

i

x - <x>
Then the variable F has a distribution that approaches a normal
distribution for TN large N. In other words

x <x>

with an approximately normal distribution with standard deviation

The approach to the normal distribution is accurate to terms 0(1/1N) which
is negligible for large N.

The importance of the Central Limit Theorem is apparent, since
it is then possible to evaluate the mean of a distribution and to find the
limits of confidence on the calculated value. This is precisely the
problem the Monte Carlo is addressed to.

Generalizations of the Central Limit Theorem are readily found.
Thus, if g(x) is some function of x, where x is distributed according to
the distribution f(x) then
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(g> =J g(x) f(x)dx

and .

<g6 g 2 (x) f (x) dx

and

r = (g2ý - <g>2g

The Central Limit Theorem is then

g , ' g(xi) <g)
i

g = N

In most cases the Monte Carlo method is used to find g with 9
not known. A statistical estimate of a may be found readily. The g
expected value of g is g

g> = N g(xi)f(x)dx = l g> = <g>

i i

that is the expected value of g is the mean. Hence g is an unbiased
estimate of (g>. The expected value of the sample variance --2 -2 is

g -g
-- COO(g 2 (g(X i)g2 f(x)dx

i

f(x)dx [(g(xi) - <g>) 2 c( - (g>)2]

i
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2
=1. 2 2] 2 '

2 N 
N2

2 ]9 N-1 19-9

Thus,

2 - 2
g N-I

Hence a statistical estimate of the standard deviation for the distribution.
of g is readily available.

The two central problems of the Monte Carlo method are seen to
be:

1) Selection of x from a distribution f(x)
2) Reduction of tLe sample variance

The selection from a distribution function is usually accomplished
by use of random numbers, i.e., numbers distributed uniformly in the interval
0 1 • 1. If the cumulative distribution F(x) is defined as

F(x) = f(x)dx

and if a random number § is chosen then

x =F-1D

is a random variable x selected from f(x). This follows since

= F(x)

and

p(§)dý = p(x)dx
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Since p(t) - I we have

p(x) = d f(x)

hence x distributed according to f(x)

For multi-dimensional and complicated distributions direct
evaluation may be impractical and the rejection technique is often used.
The method is illustrated for a one dimensional distribution f(x). If
f(x) has the distribution as shown below

f (x) f - d

0 L

ab
x

where the limits are a s x : b and fo = max f(x), then the rectangle abcd
contains all of f(x). Two random numbers § I2 are used to determine a
point in the rectangle. If (il' ý2) lies within f(x) then §i is accepted,
otherwise the process is repeated. The geometric interpretation of the
method is evident.

There are many other methods of selection which are not
enumerated here.

The reduction of sample variance may obviously be achieved by
increasing the number of samples N. Alternate methods are to modify the
sampling probabilities to decrease the sample variance 2 -.,-2- Particularly
useful techniques are considered for the penetration problem.

Let p denote the probability of a particle penetrating the shield
and (l-p) the probability of not penetrating. If N particles are incident,
then the probability of S penetrating is

P N'. S (Ip)N-S
= S!(N-S)! P

i.e., a binomial distribution. The mean of the distribution is Np and
the variance Np(l-p). The fraction transmitted is <s , with variance
p(l-p) The error in the estimated value of p, N say e, is

N
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N

and the fractional error is

ý a ý (I-P (19)
p Np

Obviously for small p the fractional error will be small only for large N.

To reduce the error, i.e., the sample variance, it is frequently
possible to modify the penetration probability in a known manner such that
the new penetration probability, say p', is greater than p. In particular,
if p' can be made equal to unity then the error is zero and p can be
determined exactly. Note that the transformation from p to p' must be
.nown so that p may be computed from the estimated p'. An alternative

procedure is to modify the calculation procedure such that the correct p
is estimated but the sample variance of the procedure is different from
(19), and hopefully smaller. Examples of both types of reduction of
variance will be shown.

The increase of penetration probability may be achieved by the
exponential transformation. The transformation is best understood by
reference to the Boltzmann equation in the form

dlSd~x -+ aT = F(x,X,p•)

The spatial variation of I(x) is of the form

I (x) =e -`L[GxI.)

For straight ahead particles, i.e., p = 1, the penetration is roughly
proportional of e-°x. For thick shields the probability of penetration
is very small. To increase the penetration probability the transformed
variable

QixI(x,X ,p) = e I (x,X ,P)

is considered. In terms of the transformed variable the Boltzmann equation
is
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d

x I+ (a - O) Y = F'(x,X4,)

and hence the attenuation factor may be reduced by proper choice of 1.
Usually a is slightly smaller than the minimum of a. The Monte Carlo
evaluation of T yields an estimate p' with small fractional error.
p is then merely e-aXp' with the same fractional error.

Other variance reduction schemes can be used with yield the

same p, but different variance. A particularly notable method is the
importance-sampling technique. As applied to penetration problems the
basis of the method is the following. When a particle is heading out of
the shield it is "important" to follow the particle since it may penetrate.
Conversely, a particle heading back into the shield has a smaller chance
of penetrating and hence is less important. It is advantageous to bias
the particle behavior so that collisions favor forward scattering of the
particle at the expense of back-scattering. Thus the probability of
forward scatter might be made n times more likely than back-scatter. To
eliminate the bias introduced, the forward scattered particle is not
counted as one particle but I/nth of a particle. The result of the
sampling procedure is that most of the computation time is spent treating
forward moving particles.

Extensions of the method are readily available. Since the bias
scattering introduces a "weight" associated with particles we may use other
weighting procedures. For instance, instead of terminating a particle
history by absorption, we might reduce the particle weight by aa/ct at
each collision and make all collisions scatterings. In this case, no
particle dies by collision but only when the weight gets too small to
contribute sensibly to the penetration.

A further extension of the same basic procedure is the "Splitting
and Russian Roulette" procedure. In this method one emphasizes deep pene-
tration by splitting each particle that penetrates to a given depth into
several particles of reduced weight. If a-particle returns toward the
source then a subsidiary game of Russian roulette is played, where the
particles chance of survival is equal to the reduced weight of the splitting.
Usually several splitting planes are introduced at various depths.

Another process of using weights is the use of expected values.
Suppose a particle is at point x heading in the direction of p. The
probability of penetration, without further collision is calculable as

-S(T-x)
W=e
0

with T the shield thickness. An amount of penetration W is tallied and

the particle is given the reduced weight (I - W ). The particle is then
followed until a collision occurs or the partic~e penetrates. If the
particle penetrated the score (1 - Wo) is tallied and a new particle
studied. If a collision occurs the new energy and direction parameters
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are determined (and perhaps a new weight). Let the resulting particle
have a weight aI(l - Wo). The penetration without further interaction
is WI. The score WI a1 (1 - W0 ) is tallied and the remaining particle
is given the weight C11 (1 - W) (1 - WI) . The process continues until the

weight becomes negligible or the particle penetrates.

Occasionally a particle with very small weight reaches a very
important region of the problem - for instance very near the edge of the
shield. In such a case, the particle need not be killed because of the
low weight, but may be given a chance to survive 'by the Russian roulette
game. If the particle survives the Russian roulette, the weight is
increased accordingly. This procedure is obviously a combination of
importance sampling and Russian roulette.

The estimated statistical variance when using any or all of the
above methods is frequently difficult to ascertain. For some rather
classical problems (evaluation of integrals) the estimated variance re-
duction is more easily found.

The evaluation of the Monte Carlo method is given below.

Advantages:

1) The method is useful for highly inhomogeneous media
and for irregular and/or higher dimension geometries.

2) It is possible to study perturbations directly rather
than consider two separate problems.

3) By appropriate choice of the method of analysis any
given property of the shield can be studied, for
instance, reflection coefficients rather than trans-
mission,

4) With a proper selection of variance reduction, the
computational time may be much smaller than, direct
integration and/or the moments method.

5) Very complicated interaction probabilities are
readily incorporated into the collision mechanics
without approximation.

Disadvantages:

1) Frequent lack of reliable error estimates.

2) Results may be seriously in error without any
statistical indication available.
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Disadvantages, Cont.:

3) For some problems the time of computation may be
excessive - this is usually true for problems of
small asymmetry and few dimensions.

4) Distribution functions to be sampled may be very
complex and time consuming to select from

5) Problem must usually be designed to yield only
limited data due to time and storage problems.

3.4 Method of Successive Scatterings

The method of successive scatterings was developed for y-ray
penetration problems, particularly in slab geometry. The technique has
the virtue of being applicable to multi-layer shields. Further, the
method is only used for finite shields which may have any desired thickness.

The basis of the method is to consider the fractional transmission
of photons of 0, 1, . . . k scatterings within the shield. If Nk(a,XOpo)
is the fraction of the incident photons transmitted which undergo k collisions,
then

N(a,Xoo) = Nk(aXo4Lo)

k

where N is the total fraction transmitted. The difficult part of the
method is the determihation of the Nk k > 0. For k = 0, we have

cra
0

N (a, XoPo) e o

The factor N1 can be found as follows. N, consists of all photons which
undergo a first collision and then escape. The probability of traveling
a distance x into the shield is merely

Ox
0

e Po

The probability of undergoing a collision within dx is 0o dx. The
probability of scattering through the angle 0 with PO respect to
the initial direction is

Us (Q' X dQ

0
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Finally, the probability of being transmitted without further collision is
N (a - xX,,) where X is the wavelength of the scattered photon and P the
drection cosine. Thus,

a x
0

Po a dx (GX_) dQ No(a-x,X,p)
dN = e O

or a x
0

a o

N1(a,Xopo) = a dxJ d_ ePo Cs(,x0o) No(a-xXi) (20)

o

The only elements of the integral over the solid angle which can contribute
to the transmission are those for which 9 such that p > 0. We then, have

aa o, = (ae

N1 (aX y = adx e P eO a s(,X 0) e (21)
o •.>0

The integration over x is performed analytically. The resultant distribution
is then numerically integrated over 9, yp from the known Klein-Nishina cross-
section.

A completely analogous procedure is used for higher k values.
Thus Nk(a,Xop0o) is

axi k-l a°x.

Nk(aX, o)0o .0 S- S i e P, a s(9X)
o O i=0

k terms k terms

Ca (a-xi)

* e P. (23)

In order to make the integrations over angle manageable it is assumed that
only forward scattered photons contribute sensibly to the transmission.
Consequently all the p i > 0. Although the x integrations are analytic, the
angular integrations are numeric. In particular 2k integrations are needed
to evaluate Nk.
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Because of the involved integrations usually the series are
terminated at k t 3, and remaining values estimated. Without considering
the details further, it is evident that the method has serious drawbacks
for compact power plants. The relative merits are listed below.

Advantages:

1) Useful for quick surveys for thin shields.

2) Can be modified to yield energy transmission
rather than number transmission.

3) The method has been extended to multi-layered
shields.

Disadvantages:

1) Computational burden is large for large number
of scattering components.

2) The results do not give all information desired,
i.e., the spectrum and direction of emergent
photons.

3) Other geometries are very difficult.

4) The errors are large for thick shields. In
particular, it is difficult to even estimate
the errors.

5) Although the method is actually an approximate
solution of the integral transport equation, the
approach is such that much useful information is
not available, in distinction to the usual solution
of the transport equation.

3.5 The Removal Cross Section Method

The simplest method of treating neutron penetration problems is
the removal cross section method. The basis of the method is the observation
that a neutron collision with hydrogen produces a lower energy neutron which
does not penetrate much further due to the increasing hydrogen cross-section.
Thus, the first collision density determines approximately the penetration
properties of hydrogenous shields. For a sufficiently thick shield, the
flux density should ultimately become exponential in nature.

The method is limited to neutrons from the fission spectrum.
After a sufficient thickness of hydrogenous media (usually water) the
lower energy neutrons are thermalized (and easily absorbed). The very
high energy end of the spectrum is attenuated by the fission spectrum
itself. The result is the spectrum "hardens" up to a certain thickness
and then behaves roughly as a monoenergetic beam.
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If a slab of material is introduced between the source and the

hydrogenous medium, the behavior deep within the shield (i.e., the water)
will be the same as without the slab but with reduced magnitude. Let
1P (x) be the hardened flux distribution in the absence of the slab, and
cp•x) the distribution with the slab. For sufficiently large x, it is
phenomenologically true that

Y () = cpo (x)
-O t

r
where Q' may be written e , with t the slab thickness. The coefficient
ar is the slab removal cross-section for the material. and is independent
of energy, x, and t.

The fact that such a simple approximation is valid depends
crucially upon having a fission spectrum and a thick hydrogenous shield.
The measurement of cp(x) (or %o(x)) is actually very difficult and implicit
in the removal cross-section measurement is the assumption that the thermal
neutron flux parallels the fast flux for sufficiently large x.

The removal cross-section method can easily be extended to cover
distributed shield material mixed with water, Although the method is very
simple the actual physical measurement of ar for either slab or distributed
shield material is rather difficult.

From this brief sketch, it is possible to rate the method,

Advantages:

1) Simple to use.

2) Can be very accurate under appropriate conditions.

3) Correction for irregularities in geometry, channels,
piping, etc. are simple in this model.

Disadvantages:

1) Requires a thick hydrogeneous shield,

2) Lack of a theoretical model for predicting
removal cross-section.

3) Uncertainties in cross-sections yield large
uncertainties in penetration.
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4.0 A PROPOSED SHIELD CALCULATION PROCEDURE

For all of the methods reviewed in Section 3.0, only the numerical
integration of the transport equation gave all of the desired information
regarding flux distributions. The major drawback with the method was the
machine time required to obtain the desired information. If the calcu-
lational procedure could be reduced then the method would be the most
general and most exact procedure available, save for analytic solutions.

The purpose of this section is to outline a new method of solution of
boundary value problems which promises significant reduction in the time of
calculation. The method has been applied successfully to diffusion calcu-
lations. The derivation of the technique will, therefore, be for diffusion
calculations. A possible method of extension for transport problems is
then discussed. It should be clearly understood that the proposed extension
has not been attempted and hence constitutes a conjectured procedure..

For illustrative purposes the diffusion equation in the form

V'D(x,y) Vy + ?. 2p(x,y) p = 0 (24)

is considered. The equation applies in the rectangular region 0 • x • a,
0 : y • b. A rectangular network is superimposed upon the region as
shown in Figure 1.

b

y k - _

0 0 1 j J

0 x -- a

Figure 1

The Difference Mesh for the Rectangular

Region 0 : x : a; 0 • y ! b
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The diffusion equation (24) is assumed to obey boundary conditions of
the form

Y0(0,y) f (y)

cp(x,O) •p(x,b) = 0 (25)

cp(a,y) = 0

The differential equation may be reduced to a difference equation of the
form

a. jk lk+ bj kPj k+ cj Pj -1k+ djkcP k..l+ ej kCpjk+l 0 (26)

Equation (26) applies of 0 < j < J, 0 < k < K) i.e., all interior points
of the mesh. The boundary conditions for the finite difference equation.
become

TPO,k f k

(Pj,0 = •jK = 0 (27)

YJ k= 0

The usual process for solving (26) is iterative. An assumed distri-
bution, consistent with the boundary conditions, is iterated by the
algorithm

_pý I [aj kcfl +cpp d. + e kP~k+l] (28)
p bI a j,k + Cj,k•-lk + dj,kyj,k-li k28j,k

The superscript p denotes the iteration index. Other iterations are
possible. Characteristically, iteration procedures such as (28) requires
an amount of time proportional to (JK) 2 .

The new method is based upon the following procedure. At the column
j = J-l, define j J-i as

(PJ-l 2

= OJ-l, 2

- ,J-IK-I
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vetrs•(n)

Now choose K-I different vectors (n) as follows

6n,l
8
n,2

(n) (29)
IJ-I=

6 n,K-i

Thus, the set (n) consists of the set of K-I unit vectors and are complete
in the space of dimension K-I. The basic difference relation (26) is
factored in the form

S 1 aj b + dj k-1 + ej,kg.j (30)

°Jlz c j,k (30k

Then each vector (n) is extended, by equation (30), through the i•e~h to the
column j = 0. 'Tu5, K-i vectors are generated at column 0, say j . The
set of vectors jkn) is complete and hence the boundary condition may be
expanded as - i

f. a n (31)

n

• ,I (n)
The same expansion for the vectors •ij then yields the desired solution.
The entire procedure requires (K-1) (j-1) steps.

n) There are two objections to the method as it stands. First, the set
n) may not be complete and hence the expansion (31) is invalid. In

gneral, this is indeed the case. The reason is that the marcnj-out,
equation (30) is unstable. That 's• errors in the vectors •-_ are ampli-
fied to such an extent that all .n) become proportional to one another
irrespective of the value of iJ - 1" This follows since the eigenvalues
of the march-out operator are greater than unity in general.

However, steps may be taken to prevent divergence of the march-out.
In particular, if the set •.n), which are orthogonal at j = J-l, are
periodically orthogonalized, then the growing components are
filtered and the completeness of the set is assured. The only exception
is for X 2 an eigenvalue of the equation, in which case no solution exists
in any event. (Incidentally the method can therefore be used to solve
eigenvalue problems also.)
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The orthogonalization requires a number of steps proportional to
(K-i) 3 and the entire procedure requires (J-l)(K-l)3 steps. For particular
problems there may be a significant reduction, i.e., when J > K. However,
the method may still be improved.

The initial orthogonal set chosen was the unit vectors. Alternative
sets may be used, for instance, the finite Fourier harmonics. If the
solution is reasonably smooth only a few Fourier harmonics are necessary
to specify the solution. Suppose the first M harmonics are sufficient 3
The number of steps, including the re-orthogonalization, is then (K-I)(J-l)(M)3
The use of an incomplete set of harmonics introduces a truncation error.
However, for most problems the amplitudes of the harmonics decreases rather
rapidly on either side of the fundamental. Of course, other orthogonal
vectors than the Fourier series are possible for use.

A practical procedure for selecting the number and range of vectors is
to expand the boundary condition fk and select only the significant vectors.
Any desired order truncation error may be found.

All of the above ideas have been successfully applied to the diffusion
equation. It has been found that the method permits a significant time
saving for solution of the equation. In particular, the criticality problem
has been solved for the first 5 critical eigenvalues with ease, a problem
that is very difficult by other means. The use of a truncated orthogonal
series has been used to solve inhomogeneous problems and experimentally it
is found that 3 vectors are sufficient to reduce the truncation error to
below 1/2','. Further research is needed to find more general rules for
selecting the proper vectors.

The application of the method to the transport equation is not as
clear cut as the above. The particular problem of concern is the boundary
conditions. Consider a finite mesh in x-p spare as shown in Figure 2.

p n

-i 0 1 j

0 -- x -- a

Figure 2

A Discrete Mesh in r-p Spare for the 1 Group

Transport Equation
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The appropriate boundary conditions at x - 0 include the incident
current, i.e., p > 0. However, nothing is known about the emergent current,
i.e.., u < 0. Likewise at x = a, the incident current is zero for a vacuum
interface. This specifies cp(a,p), p < 0. Again, nothing is known about
the flux for p > 0, that is the leakage. The boundary condition at p = + 1
for all x are merely o5E = 0, that is no gradient of the directional flux..

One possible approach is to consider the flux density to vanish at the
extrapolated end point of the region at x - a... For shielding studies it is
not clear that such an approximation is proper, since the exit current is
precisely the desired information. Furthermore, for different energy
groups, the end-point is variable.

An alternative procedure is to divide the mesh at p = 0 into two
problems with the condition that cp(x,O) be continuous. The difficulty here
is the treatment of the line at p = 0. Further, the expansion vectors along
the portion of the problem for p > 0 need not be the same for pt < 0.

It is clear from the above discussion that some effort should be
expended in adopting the procedure to transport problems.. The promise of
the reduction in time justifies considerable effort in this direction..

Under the assumption that the method can be adopted to the transport
equation, the numerical solution would then be the preferred method of
attack for compact power reactor shields.. For the very difficult geometries
such as rocket vehicles, the numerical integration solution over the primary
shield must be coupled with another method for solving for scattered radiation
into the payload. Monte Carlo is at present the only reasonable procedure.
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